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Let us examine the processes of heat and electricity transport in alloy 

mixtures. An analytical method is proposed for the determination of 
the effective thermal and electrical conductivities of such alloys, 
depending on the coefficients of thermal and electrical conductivity 
of the components, their volume concentration, and the structure of 
the alloy. 

A substant ia l  number  of theoret ica l  and exper imenta l  
invest igat ions--which a re  reviewed in [1, 2]--has been 
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Fig. 1. Diagrams of state for the alloys under  
study: a) components a re  v i r tua l ly  insoluble;  

b) components  a re  par t ia l ly  soluble.  

devoted to the p rocesses  of heat and e lec t r ic i ty  t r a n s -  
fe r  in al loys.  That review also notes the absence of a 
complete theory of t r anspor t  in al loys,  thus making it 
poss ib le  to de te rmine  the coefficients of thermal  and 
e lec t r ica l  conductivity for al loys with the r equ i red  
degree of accuracy.  F rom among the many b inary  
alloys,  we can isolate  three  basic  groups: 

1) alloys with un l imi ted  solubil i ty of the components 
(solid solutions);  

2) alloys with l imi ted  solubil i ty of the components 
(solid solut ions with a eutectic);  

3) al loys with v i r tua l ly  insoluble components (eutec- 
tic alloys, alloy mixtures) .  

Let us cons ider  this las t  group of al loys which, in 
the solid state,  a re  nonhomogeneous, r ep resen t ing  a 
mix ture  of two insoluble  components.  The d iagram of 
state shown in Fig. l a  cor responds  to such alloys. We 
know that for a concent ra t ion  of components A and B 
corresponding to the point b of the d iagram of state a 
eutectic alloy is formed,  i. e . ,  a mechanica l  mix ture  
of uni formly  d is t r ibuted  components  A and B. With 
concentra t ions  g rea t e r  than g, the solid alloy is com-  
posed of two s t ruc tu ra l  components:  of the c rys ta l s  of 
the pure component B and of the eutectic mix ture  (in 
the case of a eutectic alloy). The s t ruc tu re  of the p re -  
eutectic alloys consis ts  of the c rys ta l s  of the pure  
component A and of the eutectic [3]. Consequently,  
over the en t i re  range  of var ia t ion  in the concent ra t ion  
of the components the alloy under  cons idera t ion  r e -  
p resen t s  a mechanica l  mix ture  of two components.  In 
this case,  the d is t r ibut ion  of the components is s t a t i s -  
t ica l ly  random in nature .  Let us make the following 

assumption:  the effective thermal  conductivity of the 
s ta t i s t ica l  mix ture  is equal to the effective the rmal  
conductivity of the ordered  s t ruc ture ,  if the values of 
the the rmal  conduct iv i t i es  of the components and of 
their  concentra t ions  a re  identical for the s ta t i s t ica l  
and ordered  s t ruc tu re s .  (All of these comments  are  
equally val id for e lec t r ica l  conductivity.)  We will r e -  
tu rn  to the jus t i f ica t ion  of this assumpt ion  l a te r  on. 
It is possible  to Consider the var ious  c lasses  of the 
a l loy-mix tu re  s t ruc tu r e s  as follows: a) isolated in -  
c lusions (granules)  of component B (Fig. 2a) have 
penet ra ted  into the b inder  component A; b) the com- 
ponents A and B form an in te rpene t ra t ing  macro la t t i ce  
(Fig. 2b); c) the components form combined s t ruc tu re s  
of in te rpene t ra t ing  macro la t t i ces  and isolated in- 
c lusions (Fig. 2c). 

All of the above-enumera ted  s t ruc tu ra l  types are  
unordered  s ta t i s t ica l  mix tu res  in which the study of 
the heat and e lec t r ic i ty  t r anspo r t  is associa ted  with 
cons iderable  difficulties.  Based on the above a s sump-  
t ions,  we will r e p r e se n t  the unordered  s ta t i s t ica l  mix-  
tu re  in the form of an ordered  s t ruc ture ,  re ta in ing  the 
concentra t ion  and cha rac te r i s t i c s  of the components .  
For  any ordered  s t ruc ture ,  the exis tence of long- range  
order  is cha rac te r i s t i c  in the d is t r ibut ion  of the com-  
ponents,  This makes it  poss ib le  to isolate  the "ele-  
menta ry  cell" f rom the en t i re  s t ruc tu re  (see Fig. 3)-- 
the m i n i m u m  volume e lement  whose effective thermal  
conductivity is  equal to the the rmal  conductivity of 
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Fig. 2. St ructures  of a l loy-mix tures :  a) with isolated 
inclusions;  b) with in te rp ie rc ing  inc lus ions; c) combined. 

the en t i re  s t ruc ture ,  and so we continue the study of 
t r anspor t  p rocesses  only in the e lementa ry  c e l l  [4, 5]. 

Since the end of the las t  century,  many r e s e a r c h e r s  
have studied the p rocesses  of t r anspo r t  in s t ruc tu re s  
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Fig. 3. Form of e lementary cell  and line of heat  flux: a) struc- 
ture with insulated inclusions; b) structure with interpiercing in-  
clusions; c) current lines in cell; d) schematic  presentation of 

current lines; e) connection diagram of thermal  resistors. 
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Fig. 4. Relationship between thermal conductivity and electr ic  conductivity of  b i -  
nary alloys-mixtures with volume concentration of components, 0]o: a) alloys with 
small  difference in component  characteristics [8] (I, Pb-Sb; II, Pb-Sn); b) alloyswith 
high difference in component characteristics (I, Cd-Bi; 1, t = 50"C; 2, t = 100*C [1]; 
3, t = 50~ [8]; II, Bi-Cd; 1, t = 50"C; 2, t = 100*C [1]; III, Bi-Ag; 4, t = 30"C [9]). 
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with isolated inclusions ,  their  re la t ion  to the shape of the 
inclusions ,  the na ture  of the d is t r ibut ion  within the 
b inder  component,  the volume concent ra t ion  of the 
inclus ions ,  and the thermal  conductivity of the com- 
ponents.  The basic  conclusions of this r e s e a r c h  a re  
p resen ted  in [5, 6,12]. In our opinion, Odelevskii [4] 
achieved the mos t  co r r ec t  der iva t ion  of the functional 
re la t ionship  associa t ing  the effective cha rac te r i s t i c s  
and the de te rmin ing  p a r a m e t e r s  of a s t ruc tu re  with 
isolated inclus ions ,  i . e . ,  he proposed the following 
rela t ionship:  

~,=~1 1 - -  1 1 - - m  , ~ _ _ - - .  ( 1 )  

1 - - v  3 

The subscr ip t s  for the components in fo rmula  (1) Can- 
not be interchanged,  s ince  in the l ight of the geometr ic  
d ispar i ty  between the components,  this might lead to 
substant ia l  d is tor t ion  of the calculat ion r e su l t s  [4]. 

In the der ivat ion of re la t ionship  (1) it  was assumed  
that cubic inc lus ions  are  or iented  with respec t  to one 
of the faces,  pe rpendicu la r  to the heat flow. Analysis  
of the invest igat ional  r e su l t s  demons t ra tes  that the 
divergence in the shape of the nonelongated inclus ions  
(sphere,  cube, twinned pyramid,  nonor iented el l ipsoids  
of revolution) and their  or ienta t ion with r e spec t  to the 
d i rec t ion of the heat flow have v i r tua l ly  no effect on 
the magnitude of the effective thermal  conductivity of 
the sys tem with isolated inclus ions  [7], The t r a n s f e r  
of heat in s t ruc tu re s  with in te rpene t ra t ing  components 
has been studied in [5] in which the following expres -  
s ion has been proposed for the de te rmina t ion  of the 
effective the rmal  conductivity: 

[ 2vc(1--c) l &=&l c~+v(1--c)2+ v c + ( 1 - - c )  ' (2) 

where c is the geometr ic  pa r ame te r  of the lat t ice (see 
Fig. 3b), accociated with the volume concent ra t ion  m 
of the second component by the equation 

rn = 2c~-- 3c~ + 1, (3) 

whose solut ion has the form 

c = 0.5 + acos 2_ 3 (4) 

when 

0 ~ m ~ 0 . 5 ;  a = - - l ;  ~ = arc cos (1- -  2rn), 

0 . 5 ~ r n ~ l . 0 ;  a =  1; ~0=arccos(2m-- 1), 

where 

2 7 0 ~  ~ 

In the s t ruc tu re  with in te rpene t ra t ing  components,  
the subscr ip t s  of the components may be chosen a r b i -  
t ra r i ly ,  s ince in the light of the geometr ic  s imi l a r i t y  
between the components,  the subst i tut ion of the sub-  
sc r ip t s  will not affect the resu l t s  of the calculation.  

To de te rmine  the boundar ies  of applicabil i ty for 
formulas  (1) and (2), le t  us consider  the assumpt ions  

and l imi ta t ions  which were  employed in the de t e rmina -  
t ion of these re la t ionships .  

In r e fe rences  [4, 5] it was assumed that infini tely 
thin adiabatic i n t e r l aye r s  have been introduced into 
the e lementa ry  cell (Fig. 3a, b) at the boundar ies  be -  
tween heterogeneous bodies pa ra l l e l  to the heat flow. 
The introduct ion of these in t e r l aye r s  causes  the s t r e a m -  
l ines  of the heat flow within the e lementa ry  cell  to be -  
come para l le l ,  thus making it poss ib le  to reduce the 
problem under  Considerat ion to the s imples t  one- 
d imensional  ca se .  F igure  3c shows the heat-flow 
s t r eaml ines  in the e l emen ta ry  cell (Fig. 3a) of a s t r u c -  
ture  with isolated inc lus ions  (for the special  case of 
k 1 > X2) without these adiabatic in t e r i aye r s ,  while Fig. 
3d shows the same si tuat ion in the p resence  of such 
adiabatic i n t e r l aye r s .  Fur ther ,  the e l emen ta ry  Cell is 
divided into severa l  par ts  with the rmal  r e s i s t ances  
RI, R2, and R3, which were  calculated on the bas i s  of 
the s imple  formulas  for flat  walls .  The total the rmal  
r e s i s t ance  of the e lementa ry  cell was found f rom the 
c i rcu i t  shown in Fig. 3e. The e l emen ta ry  cell  was 
then presen ted  in the form of a homogeneous body 
with an effective the rmal  conductivity ~, and whose 
thermal  r e s i s t ance  was also de te rmined  on the bas is  
of the formula  for a fiat  wall. Equating both expres -  
s ions for the the rmal  r e s i s t ance  of the e l emen ta ry  
cell, and express ing  the geometr ic  p a r a m e t e r s  in 
t e r m s  of the concentra t ion,  we derive the analyt ical  
express ion  (1). This same approach was also adopted 
for the e lementa ry  cell (Fig. 3b) of a sys tem with 
in te rpene t ra t ing  components.  

It was demonst ra ted  in [5] that the assumpt ion  of 
pa ra l l e l  heat-flow s t r e a m l i n e s  has but a slight effect 
on the f inal  resul t ,  i . e . ,  we can a s sume  the hypothesis 
to be valid. 

The following cons t ra in t  has been introduced i m -  
pl ici t ly into the ma themat i ca l  rea l i za t ion  of the above 
considera t ions :  there  are  no additional physical  or 
chemical  effects p resen t  at the boundar ies  between 
heterogeneous components  to a l te r  the flow of heat  to 
the e l emen ta ry  cell ,  i . e . ,  the the rmal  conductivi t ies  
of the or ig inal  components r e m a i n  unchanged af ter  
they have been brought into contact.  This l imi ta t ion  
nar rows  the range  of applicabi l i ty  for re la t ionships  
(1) and (27; they are  val id for al loys whose s t ruc tu re  
is  a mechanica l  mixture .  

The na ture  of the alloy s t ruc tu re  can be de te rmined  
by studying microscopic  sect ions  and the d iagram of 
state. If the components  of the allo~ a re  v i r tua l ly  in-  
soluble (see Fig. la) ,  the proposed method is sui table  
for  the de te rmina t ion  of the effective the rmal  conduc- 
t ivity of the alloy mix tu re  in the region h-k- / - i .  In 
the case of l imi ted  solubil i ty for the components  (see 
Fig. lb),  the proposed calculat ion method can be used 
in the zone f - d - e - g ,  i . e . ,  in the region of mixed o~ 
fl solid solutions.  The or iginal  components in this case  
a re  the a and fl solid solut ions at the corresponding 
l ines f - d  and g-e.  

To ver ify the sui tabi l i ty  of the proposed method and 
to de te rmine  the region of its applicabil i ty,  we com- 
pared the calculat ion resu l t s  for the effective the rmal  
and e lec t r i ca l  conductivi t ies  of b inary  alloys with 
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vi r tua l ly  insoluble  components  against  exper imentaI  
data taken from [1,4, 8,9] (see Fig~ 4). 

The sa t i s fac tory  coincidence of the calculat ion r e -  
sul ts  and those of the exper iment  a t tes t  to the poss i -  
bi l i ty  of p resen t ing  a s ta t i s t i ca l  mix ture  in the form 
of an ordered  s t ruc tu re  in the de te rmina t ion  of the 
effective coefficient  of mix ture  t r anspor t ,  i . e . ,  the 
assumpt ion  may be regarded as having been val idated 
exper imenta l ly .  We note that despite the extensive 
publication,  by var ious  authors,  of the exper imenta l  
data obtained in the study of the t he rma l  and e lec-  
t r i ca l  conductivi t ies  of alloys, only a few of these 
p resen t  resu l t s  for a wide range of var ia t ion  in com-  
ponent concentra t ion.  This explains the compara t ive ly  
sma l l  volume of exper imenta l  data which we have p r e -  
sented to just i fy the proposed method of calculat ing 
the t r anspo r t  coefficients for the alloy mix tures .  The 
validity of these assumpt ions  is ind i rec t ly  conf i rmed 
by the ag reement  between the calculat ion resu l t s  and 
the exper imenta l  data with respec t  to the the rmal  con-  
ductivity of s ta t i s t i ca l  mix tures  not re la ted  to alloys 
[7, 11]. We felt it  n ece s sa ry  to dwell in such detail  
on p rec i se ly  this assumption,  s ince  the r ema in ing  
assumpt ions  have e i ther  been val idated analyt ica l ly  
or have been dropped through the introduct ion of l imi t a -  
t ions on the proposed method of calculat ing the effec- 
tive t r anspo r t  coefficients.  

Extensive use  is made in the physics  of meta l s  of 
the ruIe re la t ing  the p rope r t i e s  of al loys with the 
p roper t i es  of the components and the i r  concent ra t ions ,  
this ru le  known as the Kurnakov law. According to the 
Kurnakov law, the pr inc ip le  of addit ivity applies to 
alloy mix tures ,  i . e . ,  a l inear  re la t ionship  between 
the p roper t i es  of the alloy and the concent ra t ion  of 
the components  

~. = ~.~m + X~(1 - - m ) .  (5) 

It is not difficult to demons t ra te  that re la t ionship  
(5) is specia l  in na ture  and applicable in the l imi ted 
range of applicat ion for the p a r a m e t e r  v. Indeed, for 
0.7 -< v -< 100 re la t ionships  (1) and (2) are  close to 
the l inear  (see Fig. 4a) and v i r tua l ly  coincide with 
re la t ionship  (5) over  the ent i re  range of var ia t ion  in 
concentrat ion.  However, applicat ion of the Kurnakov 
law for the de te rmina t ion  of the a l loy -mix tu re  prop-  
e r t ies  in the region of low values for the p a r a m e t e r  
(v < 0.5) leads to subs tan t ia l  e r ro r .  

In formulas  (1) and (2), for  the de te rmina t ion  of 
the effective t he rma l  conductivity the concent ra t ion  
is expressed  in volume percent ,  whereas  in the m a -  
jo r i ty  of cases  it  is the weight concent ra t ion  of the 
components  that is known for al loys.  The re la t ionship  
between the volume and weight concent ra t ions  of the 
component is specif ied by the express ion  

n P2 
m , n = - - -  (6) 

~1 + n ( 1  + ~1) Pl 

In conclusion,  let us examine the p rac t ica l  scheme 
of calculat ing the effective the rmal  and e lec t r i ca l  con- 
ductivit ies of the alloy mixtures .  F i r s t  of all, we have 
to use the d iagram of state to prove that the given 
alloy is a mechanica l  mixture .  Fu r the r  analys is  of 
the microscopic  sect ions  enables us to de te rmine  the 
s t ruc tu re  of the alloy (isolated inclusions,  in te rpene-  
t ra t ing  components,  or a combination of these) and to 
se lec t  the calculat ional  formula  (1) or (2)~ The method 
of calculat ing the effective the rmal  and e lec t r ica l  con- 
ductivi t ies  for alloys of combined s t ruc tu re  for any 
number  of insoluble components - -sa id  method involving 
the use of re la t ionships  (1) and (2)--has been covered 
in detail  in r e fe rence  [10]. 

If we do not know the nature  of the a l loy 's  s t r u c -  
ture,  for tentat ive calculat ions we can take the a r i th -  
met ic  mean  of that value from formulas  (1) and (2). 

NOTATION 

X is the effective the rmal  conductivity of the mixture ;  
X l and X2 are the thermal -conduct iv i ty  coefficients of 
the b inders  and inclus ions ,  respect ively;  m is the 
volume concent ra t ion  of inclusions;  n is the weight 
concentra t ion  of components;  Pi is the specific density 
of components.  
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